A constraint-reduced variant of Mehrotra's predictor-corrector algorithm
نویسندگان
چکیده
Consider linear programs in dual standard form with n constraints and m variables. When typical interior-point algorithms are used for the solution of such problems, updating the iterates, using direct methods for solving the linear systems and assuming a dense constraint matrix A, requires O(nm) operations per iteration. When n ≫ m it is often the case that at each iteration most of the constraints are not very relevant for the construction of a good update and could be ignored to achieve computational savings. This idea was considered in the 1990s by Dantzig and Ye, Tone, Kaliski and Ye, den Hertog et al. and others. More recently, Tits et al. proposed a simple “constraint-reduction” scheme and proved global and local quadratic convergence for a dual-feasible primal-dual affine-scaling method modified according to that scheme. In the present work, similar convergence results are proved for a dual-feasible constraint-reduced variant of Mehrotra’s predictor-corrector algorithm, under less restrictive nondegeneracy assumptions. These stronger results extend to primal-dual affine scaling as a limiting case. Promising numerical results are reported. As a special case, our analysis applies to standard (unreduced) primal-dual affine scaling. While we do not prove polynomial complexity, our algorithm allows for much larger steps than in previous convergence analyses of such algorithms.
منابع مشابه
Extending Mehrotra's Corrector for Linear Programs
In this article a primal-dual interior-point method for solving linear programs is proposed. A new approach for generating higher-order search directions, and a new method for an eecient higher-order subspace search along several search directions are the basis of the proposed extension. The subspace search is reduced to a linear program in several variables. The method using the simplest (two-...
متن کاملA Constraint-reduced Algorithm for Semidefinite Optimization Problems using HKM and AHO directions
We develop a new constraint-reduced infeasible predictor-corrector interior point method for semidefinite programming, and we prove that it has polynomial global convergence and superlinear local convergence. While the new algorithm uses HKM direction in predictor step, it adopts AHO direction in corrector step to achieve a faster approach to the central path. In contrast to the previous constr...
متن کاملA Constraint-Reduced Algorithm for Semidefinite Optimization Problems with Superlinear Convergence
Constraint reduction is an essential method because the computational cost of the interior point methods can be effectively saved. Park and O’Leary proposed a constraint-reduced predictor-corrector algorithm for semidefinite programming with polynomial global convergence, but they did not show its superlinear convergence. We first develop a constraintreduced algorithm for semidefinite programmi...
متن کاملAdaptive constraint reduction for convex quadratic programming
We propose an adaptive, constraint-reduced, primal-dual interior-point algorithm for convex quadratic programming with many more inequality constraints than variables. We reduce the computational effort by assembling, instead of the exact normal-equation matrix, an approximate matrix from a well chosen index set which includes indices of constraints that seem to be most critical. Starting with ...
متن کاملCorrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path
In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 51 شماره
صفحات -
تاریخ انتشار 2012